gravatar

mindra

mindra

Recently Published

Spatial Statistics
From Frequentist to Bayesian
Ekonometrika
Model OLS menjelaskan hubungan linear antara variabel dependen dan independen dengan meminimalkan jumlah kuadrat galat, menjadi dasar analisis regresi klasik. Model IV digunakan ketika ada endogenitas, dengan memakai variabel instrumen yang berkorelasi dengan variabel penjelas tetapi tidak dengan error. Model DiD membandingkan perubahan rata-rata antara kelompok perlakuan dan kontrol sebelum dan sesudah intervensi untuk menaksir efek kausal kebijakan. Model SCM membangun unit kontrol sintetis dari kombinasi unit lain yang meniru tren pra-perlakuan, sehingga perbedaan pasca-intervensi mencerminkan dampak kebijakan. Model VAR menganalisis hubungan dinamis antar variabel endogen dalam sistem multivariat melalui nilai lag-nya untuk mengungkap keterkaitan jangka waktu, peramalan, serta efek kejut antar variabel.
Penjurusan
Laporan ini menganalisis data penjurusan siswa dari berbagai perspektif stakeholder pendidikan. Analisis mencakup demografi responden dan persepsi mereka terhadap sistem penjurusan baru.
Tracer Study Periode Akademik 2024/2025
Tracer Study 2024/2025 memetakan penyebaran, peran, dan kepuasan kerja lulusan S2 Statistika Terapan, serta menghimpun masukan kurikulum terkait kebutuhan AI dan data modern.
LogLinear Model
Multinomial and Ordinal Logit Model
Multinomial and Ordinal Logit Model
Spatial Eonometrics
Introducing Spatial Econometrics
Support Vector Machine (SVM) in R
Support Vector Machine (SVM) adalah algoritma pembelajaran mesin yang digunakan untuk klasifikasi dan regresi, dengan tujuan menemukan hyperplane optimal yang memisahkan data ke dalam kelas-kelas berbeda. Dalam R, SVM dapat diimplementasikan menggunakan paket seperti e1071, caret, atau kernlab, yang menyediakan fungsi-fungsi untuk membangun dan melatih model SVM. SVM bekerja dengan memaksimalkan margin antara kelas-kelas data, dan dapat menangani data yang tidak terpisahkan secara linear melalui penggunaan fungsi kernel seperti radial basis function (RBF). Algoritma ini efektif dalam berbagai aplikasi, termasuk pengenalan pola, klasifikasi teks, dan bioinformatika.
Data Cleaning: From Unstructured to Structured Data (with R)
"Data Cleaning: From Unstructured to Structured Data (with R)" is the process of transforming messy, raw data into a clean, organized format that can be easily analyzed. Using R, we remove errors, fill in missing values, and restructure the data into tidy tables ready for analysis.
KRIGING
Contoh Kriging
GWR
UserStatisfaction
UserStatisfaction
Evaluation Report of the Applied Statistics Master’s Program Curriculum 2020
n the rapidly evolving landscape of data science and analytics, the importance of a robust and adaptive curriculum for a Master’s in Applied Statistics cannot be overstated. As we navigate the complexities of the 5.0 society—a term that encapsulates the fusion of digital, physical, and biological realms driven by technological advancements—the necessity for an education system that remains relevant, responsive, and innovative is paramount. To this end, we undertake a rigorous and systematic evaluation of our Master’s in Applied Statistics curriculum to ensure it meets the ever-changing demands of our stakeholders and aligns with the latest technological developments.
Advanced Spatial Statistics
The "Advanced Spatial Statistics" major focuses on the sophisticated analysis and interpretation of spatial data. Students learn to create detailed maps, develop spatial models, and perform spatiotemporal forecasting using advanced statistical techniques, preparing them for research and professional roles in various fields requiring spatial data expertise.