Recently Published
Practica Calificada 1
Sanchez Zevallos Ivan Segundo
24140045
Heatmap
H.H. = read.table("bionform/GSE46224_Yang_et_al_human_heart_RNASeq.txt/GSE46224_Yang_et_al_human_heart_RNASeq.txt")
colnames(H.H.) = H.H.[1,]
rownames(H.H.) = H.H.[ , 1]
Human_H = H.H.[-1,-1]
class(Human_H)
# PREPARATION Human_H
Human_Hr =as.matrix(Human_H)
is.matrix(Human_Hr)
Human_Hrt = apply(X = Human_Hr, MARGIN = 1 , FUN = var)
# SELECT THE MOST 100 VARIANCE GENE
Human_gene = names(Human_Hrt[order(Human_Hrt , decreasing = T)][1:100])
human_heart = Human_H[Human_gene , ]
human_heart_fl = apply(human_heart , 2 ,FUN = as.numeric)
pheatmap(mat = human_heart_fl , scale = "row" , cluster_rows = T ,
cluster_cols = T , cutree_cols = 5 , show_rownames = T ,
show_colnames = T, main = "Human_Heart data")
str(human_heart_fl)
WordPredX App Pres
Presentation of my WordPredX app
Version Control in R with GitHub: from zero to hero
This article is practical guide to using Git and GitHub with RStudio for version control and collaboration in data science projects. It explains why version control matters, introduces Git (local) and GitHub (cloud), and shows how these tools integrate with RStudio for smooth teamwork