Recently Published

DPAA_Presenation_v1
Practica Calificada 1
Sanchez Zevallos Ivan Segundo 24140045
Heatmap
H.H. = read.table("bionform/GSE46224_Yang_et_al_human_heart_RNASeq.txt/GSE46224_Yang_et_al_human_heart_RNASeq.txt") colnames(H.H.) = H.H.[1,] rownames(H.H.) = H.H.[ , 1] Human_H = H.H.[-1,-1] class(Human_H) # PREPARATION Human_H Human_Hr =as.matrix(Human_H) is.matrix(Human_Hr) Human_Hrt = apply(X = Human_Hr, MARGIN = 1 , FUN = var) # SELECT THE MOST 100 VARIANCE GENE Human_gene = names(Human_Hrt[order(Human_Hrt , decreasing = T)][1:100]) human_heart = Human_H[Human_gene , ] human_heart_fl = apply(human_heart , 2 ,FUN = as.numeric) pheatmap(mat = human_heart_fl , scale = "row" , cluster_rows = T , cluster_cols = T , cutree_cols = 5 , show_rownames = T , show_colnames = T, main = "Human_Heart data") str(human_heart_fl)
ug_major
Document
WordPredX App Pres
Presentation of my WordPredX app
Version Control in R with GitHub: from zero to hero
This article is practical guide to using Git and GitHub with RStudio for version control and collaboration in data science projects. It explains why version control matters, introduces Git (local) and GitHub (cloud), and shows how these tools integrate with RStudio for smooth teamwork
US CPI